
1

General harvester for Ricgraph (Research in context graph)

Rik D.T. Janssen, June 24, 2025

Introduction
In this project, the aim is to design and program in Python a general harvester for Ricgraph. A
harvester gets information from source systems and stores this information in Ricgraph. This new
harvester should be easy to maintain and easy to extend for new harvest sources, such as
e.g. Zenodo, ORCID, Scopus, Lens, OpenAIRE, DataCite Commons, GitHub (and other Gits).

Ricgraph (www.ricgraph.eu), also known as Research in context graph, enables the exploration of
researchers, teams, their results, collaborations, skills, projects, and the relations between these
items.

Ricgraph can store many types of items into a single graph. These items can be obtained from various
systems and from multiple organizations. Ricgraph facilitates reasoning about these items because it
infers new relations between items, relations that are not present in any of the separate source
systems. It is flexible and extensible, and can be adapted to new application areas.

In this project, we apply Ricgraph to the application area research information. Research information is
about anything related to research: research results, the persons in a research team, their
collaborations, their skills, projects in which they have participated, as well as the relations between
these entities. Examples of research results are publications, data sets, and software.

Ricgraph is open source software and can be found on GitHub
(https://github.com/UtrechtUniversity/ricgraph).

Current situation
Ricgraph includes scripts to harvest research information from five source systems:
• OpenAlex: harvest_openalex_to_ricgraph.py.
• Pure: harvest_pure_to_ricgraph.py.
• Research Software Directory: harvest_rsd_to_ricgraph.py.
• Utrecht University staff pages: harvest_uustaffpages_to_ricgraph.py.
• Yoda: harvest_yoda_datacite_to_ricgraph.py.

The sources for these scripts are in https://github.com/UtrechtUniversity/ricgraph/tree/main/harvest,
the documentation is in https://docs.ricgraph.eu/docs/ricgraph_harvest_scripts.html.

Every harvest script is structured as follows:
1. extract data from a source system;
2. (optional) process or combine (transform) the harvested data, e.g., combine a field with a first

name and a field with a last name to one field representing a full name;
3. transform the data to item pairs, load in Ricgraph.

Since every script uses this structure, there is a lot of duplication in code, which is not considered to
be a “good programming practice”. New harvest scripts for new sources are relatively easy to write, by
copying one of the scripts and adapting it for the new harvest source. However, that generates even
more code duplication, so this is not desirable.

Envisioned situation
A new general harvester that is easy to maintain and easy to extend for new harvest sources. That is,
easy to extend for persons that know how to program in Python.

A possibility to implement this might be inheritance as used in object oriented environments. Another
possibility a kind of “specification file” for every source system, that contains the things that are

https://zenodo.org/
https://orcid.org/
https://www.scopus.com/
https://www.lens.org/
https://explore.openaire.eu/
https://commons.datacite.org/
https://github.com/
http://www.ricgraph.eu/
https://github.com/UtrechtUniversity/ricgraph
https://openalex.org/
https://www.elsevier.com/solutions/pure
https://research-software-directory.org/
https://www.uu.nl/medewerkers
https://www.uu.nl/en/research/yoda
https://github.com/UtrechtUniversity/ricgraph/tree/main/harvest
https://docs.ricgraph.eu/docs/ricgraph_harvest_scripts.html

2

different for each source system to be harvested, and a Python script that reads this specification file,
and then does the three steps mentioned in the previous section. It is part of the design phase of the
general harvester to devise an attractive and “future proof” solution, in “good programming practice”, in
maintainability, and in ease of writing scripts to harvest new sources.

The harvest scripts for the five source systems in section “Current situation” vary in how complicated
they are. The harvest script for the Research Software Directory is the easiest, followed by the harvest
script for OpenAlex. The harvest script for Pure is the most complicated, since it harvests several
types of items (persons, organizations, research outputs, projects) which are dependent on each
other, e.g.:
• Persons, projects and research results are connected to organizations.
• Organizations have (sub-)organizations.
• Research results have external authors and author collaborations which are only found during

parsing of the research results (and not during parsing of persons).
• Projects are connected to almost everything.

The UU staff pages harvest script has a special structure because of its API interface, and the Yoda
harvest script harvests XML instead of JSON.

In this project, an incremental approach for design and implementation is used, starting with the
Research Software Directory or OpenAlex, followed by Pure, followed by the UU staff pages and
Yoda.

The following is a list of deliverables. There is no implied order. It is to be expected that many of these
activities are intertwined.
• Web review on possible existing design approaches.
• Web review on possible existing solutions.
• Design & implementation in Python. Documentation.
• For the chosen design, creating scripts/specification files/whatever for each of the five source

systems.
• Testing. This is done by a comparison of the harvesting results of each of the five current harvest

scripts, compared to that of the general harvester for the same harvest source.
• Bonus: creating scripts/specification files/whatever for one or more new source systems.

	Introduction
	Current situation
	Envisioned situation

